Complementing GNSS for Resilient Performance Based Navigation

September 16, 2024

Dr. Okuary Osechas, Researcher ZHAW (Zurich University of Applied Sciences) Phone: +41 58 934 67 53 Email: osec@zhaw.ch Dr. Gary A. McGraw PNT Consultant Phone: +1-319-210-9707 Email: mcgraw.pnt@gmail.com

© 2024 Resilient Navigation & Time Foundation, All Rights Reserved

Goal: PNT availability, regardless of GNSS RFI

(Well) integrated terrestrial Complementary PNT sources:

- Provide alternative/backup to GNSS:
 - Seamless positioning (even under RFI)
 - Timing
 - Continuity of PBN/RNP
 - Dissimilar cross-check of GNSS (anti-spoof)
- May provide Data COM:
 - GNSS Differential Corrections
 - GNSS Authentication

Osechas, et al. (2017), "Use of APNT to Protect GNSS-Based RNP Services from Intentional and Unintentional RF Interference". ION ITM 2017.

Complementary PNT is more than a backup to GNSS (1+1>2 !)

Outline

- Effect of RFI on aviation
- Performance Based Navigation (PBN) Overview
 - Importance of PBN to modern aviation
 - Reliance of PBN/RNP on GNSS
- Complementary PNT (CPNT) technologies for achieving resilient PBN
 - Legacy navigation aids
 - Modernized terrestrial radio navigation
 - LEO PNT, 5G
- Resilient CPNT technology assessment
 - Overview of candidate systems
 - Set of performance criteria
- Recommendations

GNSS jamming and spoofing are hindering enroute air traffic

TIMING

FOUNDATIO

- Jamming: worldwide and increasing
- Spoofing: is now a daily occurrence
- Aviation is a collateral victim

Operations comply with safety standards, but RFI reduces margins

Osechas, et al. (2022), "Impact of GNSS-Band Radio Interference on Operational Avionics". NAVI Vol. 69, Issue 2 Summer 2022.

OPSGROUP (2024), "GPS Spoofing, Final Report of the GPS Spoofing WorkGroup", https://ops.group/blog/gps-spoofing-final-report/.

Threats to GNSS

- Jamming
- Spoofing
- Space weather Iono scintillation

- Degraded SiS : DoS + HMI
- Users can mitigate
- Benefit from other PNT sources

• Space weather – HW damage

RFI

- Space debris
- Anti-satellite weapons
- Cyber attacks

- Loss of SiS
- Users cannot mitigate
- Require other PNT sources

Complementary PNT needed!

GNSS spoofing induces multiple issues for aviation

Unexpected dependencies on GNSS→ Deficiencies in system integration!

OPSGROUP (2024), "GPS Spoofing, Final Report of the GPS Spoofing WorkGroup", https://ops.group/blog/gps-spoofing-final-report/.

EASA (2024), "Safety Information Bulletin 2022-02R3: Global Navigation Satellite System Outage and Alterations Leading to Communication / Navigation / Surveillance Degradation".

PBN yields efficiency, flexibility and increased capacity

Loss of GNSS disrupts operations

TIMINO

Need modernized CPNT to support RNP/RNAV

Need:

- Frequency diversity: non-GNSS ARNS
- Cross-check of GNSS: anti-spoof
- Robust integration of CPNT

To provide:

- Resilient RNP (e.g., OBPMA)
- Improve spectral efficiency (iCNS)
- Fill in RNAV CPNT gaps
- Support emerging aviation applications (e.g., AAM)
- Support autonomous operations

No single CPNT source can back up GNSS!

Osechas, et al. (2024), "Navigation Needs for the Unpiloted Airspace." ION ITM 2024.

A priori list of potential Complementary PNT sources

- Existing, e.g. Iridium/STL
- Emerging, e.g., Starlink, Xona, Trustpoint

CPNT solution evaluation summary

	Operations Supported	Deployment	Operational Coverage	Backwards Compatibility	Spectrum Efficiency	Capacity Limits	Other Applications	Provides Timing	Authentication
DME/VOR	RNAV 5	Deployed / Certified	40 NM		High PAPR	Capacity Limited	Designed for Aviation		
DME/DME	RNAV 1	Deployed / Certified	200 NM		High PAPR	Capacity Limited	Designed for Aviation		
eDME	RNP 1	New Gnd / Air Equip.	200 NM	Yes: 100%	High PAPR	PR mode	Designed for Aviation	~100 ns	Possible
eLORAN	RNP 0.3	New Gnd / Air Equip.	~1000 NM	New Aero NAVAID	Not L-Band	Passive	Maritime & Timing	~100 ns	Possible
LDACS-NAV	< RNP 0.3	New Gnd / Air Equip.	200 NM	New Aviation COM	Shared with COM	PR mode	Potential for AAM	< 100 ns	Encrypted COM
5G Cellular	RNP 0.3?	New Paradigm	<40 NM	New System	Separate from ARNS	Capacity Limited	Potential for AAM, GND	?	Encrypted COM?
LEO SATNAV	?	New SVs / Air Equip.	?	New System	Separate from ARNS	Passive?	Land/Sea/Air	< 100 ns	?

	Poor/Costly		Marginal		Fair		Good		Excellent		N/A		Can't Evaluate
--	-------------	--	----------	--	------	--	------	--	-----------	--	-----	--	----------------

CPNT solution evaluation discussion (1)

	Operations Supported	Deployment	Operational Coverage	Backwards Compatibility	Spectrum Efficiency	Capacity Limits	Other Applications	Provides Timing	Authentication
DME/VOR	RNAV 5	Deployed / Certified	40 NM		High PAPR	Capacity Limited	Designed for Aviation		
DME/DME	RNAV 1	Deployed / Certified	200 NM		High PAPR	Capacity Limited	Designed for Aviation		
eDME	RNP 1	New Gnd / Air Equip.	200 NM	Yes: 100%	High PAPR	PR mode	Designed for Aviation	~100 ns	Possible
• Legacy	y NAVAIDs	s do not s	upport P	BN needs	– want F	RNP-AP	CH/RNP C).3 or b	etter
Mode	rnization	is needed	!						
LDACS-NAV									Encrypted COM
5G Cellular									Encrypted COM?
LEO SATNAV									?

CPNT solution evaluation discussion (2)

	Operations Supported	Deployment	Operational Coverage	Backwards Compatibility	Spectrum Efficiency	Capacity Limits	Other Applications	Provides Timing	Authentication
DME/VOR	RNAV 5	Deployed / Certified	40 NM		High PAPR	Capacity Limited	Designed for Aviation		
DME/DME									
• 5G Ce	llular & LE	EO SATNA	V as aviat	ion CPNT	sources	are no	t well defi	ined	Possible
• Unlike	ly to prov	vide perfo	rmance g	guarantees	s that civ	vil aviat	ion users	expect	Possible
• way n	ave prom	ise for en	nerging a	pplication	s like aa	IVI, UAS	Potential for AAM		Encrypted
5G Cellular	RNP 0.3?	New Paradigm	<40 NM	New System	Separate from ARNS	Capacity Limited	Potential for AAM, GND	?	Encrypted COM?
LEO SATNAV	?	New SVs / Air Equip.	?	New System	Separate from ARNS	Passive?	Land/Sea/Air	< 100 ns	?

CPNT solution evaluation discussion (3)

	Operations Supported	Deployment	Operational Coverage	Backwards Compatibility	Spectrum Efficiency	Capacity Limits	Other Applications	Provides Timing	Authentication
• eDME	, eLORAN	and mult	ci-functio	n COM (LE	DACS-NA	V) show	w the mos	st prom	nise
DME/DME	RNAV 1	Deployed / Certified	200 NM		High PAPR	Capacity Limited	Designed for Aviation		
eDME	RNP 1	New Gnd / Air Equip.	200 NM	Yes: 100%	High PAPR	PR mode	Designed for Aviation	~100 ns	Possible
eLORAN	RNP 0.3	New Gnd / Air Equip.	~1000 NM	New Aero NAVAID	Not L-Band	Passive	Maritime & Timing	~100 ns	Possible
LDACS-NAV	< RNP 0.3	New Gnd / Air Equip.	200 NM	New Aviation COM	Shared with COM	PR mode	Potential for AAM	< 100 ns	Encrypted COM
5G Cellular	RNP 0.3?	New Paradigm	<40 NM	New System	Separate from ARNS	Capacity Limited	Potential for AAM, GND	?	Encrypted COM?

Candidate terrestrial navaids for CPNT

- Near-term: eDME
 - Backwards compatible: add local oscillator and pseudoranging
 Lower RNP, spectrum efficiency (high PAPR in L band)
- Medium-term: eLORAN
 - Remote routes (think Eastern Med!); wide-area time distribution
 Significant new infrastructure; new standards needed
- Medium- to Long-term: LDACS-NAV
 - ✓ Lower RNP; spectrum efficiency; ICAO standardization in process
 - Significant new infrastructure

A combination of CPNT technologies will be needed

High-level recommendations

Improve Aircraft PNT Integrations

- Robust monitoring of GNSS with CPNT
- Eliminate direct use of GNSS PNT for non-NAV functions
- Have an independent aircraft time source

Foster Collaboration

- International coordinated R&D
- Expedite standards developments
- Infrastructure investments

Toughen GNSS

- Signal processing to detect & exclude spoofing
- CRPAs + digital beamforming antenna signal processing for Anti-Jam / Anti-Spoof

Improved Air Traffic Services

- Bring in real-time RFI information
- Provide operators and aircrews with better preflight & real-time RFI situational awareness

Modernize Terrestrial Complementary PNT

- Develop and deploy new CPNT sources
- Improve spectrum efficiency
- Improve coverage
- Enable On-Board Performance Monitoring & Alerting to support RNP operations

Summary

- RFI is a serious threat to aviation
 - Reduction of safety margins
- Preserve RNP in absence of GNSS
- → Develop terrestrial CPNT for RNP
 - eDME
 - eLORAN
 - LDACS-NAV
- Paradigm shifts:
 - Improve integration
 - Remove unnecessary dependence on GNSS
 - Terrestrial no longer "Alternative" Needs to be a full "Complementary"
 - Consider multi-domain solutions to go beyond just aviation
- Continue (funding) research and development
 - Multi-function radio links
 - Technologies to support AAM/UAS
 - More international collaboration!

	Operations Supported	Deployment	Operational Coverage	Backwards Compatibility	Spectrum Efficiency	Capacity Limits	Other Applications	Provides Timing	Authentication			
eDME, eLORAN and multi-function COM (LDACS-NAV) show the most promise												
eDME	RNP 1	New Gnd / Air Equip.	200 NM	Yes: 100%	High PAPR	PR mode	Designed for Aviation	~100 ns	Possible			
eLORAN	RNP 0.3	New Gnd / Air Equip.	~1000 NM	New Aero NAVAID	Not L-Band	Passive	Maritime & Timing	~100 ns	Possible			
LDACS-NAV	< RNP 0.3	New Gnd / Air Equip.	200 NM	New Aviation COM	Shared with COM	PR mode	Potential for AAM	< 100 ns	Encrypted COM			
5G Cellular	RNP 0.3?	New Paradigm	<40 NM	New System	Separate from ARNS	Capacity Limited	Potential for AAM, GND	2	Encrypted COM?			

