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Artemis: NASA
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• In situ resource use 
• Low gravity 
• Low temperature 
• Almost ideal vacuum 

• Biotechnology 
• Develop uniform crystals 
• Ideal for growing protein 
• Drugs & pharmaceuticals  

• Navigation  
• Precision landing (~10m) 
• Path estimation 

https://www.nasa.gov/specials/artemis/index.html



Artemis: NASA
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https://www.nasa.gov/general/nasas-artemis-iv-building-first-lunar-space-station/



LunaNet:NASA
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• Network (internet for the moon) 

• Navigation 

• Detection and information  

• Science services

https://www.nasa.gov/humans-in-space/lunanet-empowering-artemis-with-communications-and-navigation-interoperability/



• First off-planet commercial telecoms and 
satellite navigation provider 

• Planned operations on the South Pole 

• ~5 satellites in lunar orbit, plus a relay 

• ~15 hours of coverage per day

Moonlight: European Space Agency (ESA) 
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https://www.esa.int/ESA_Multimedia/Videos/2022/11/What_is_ESA_s_Moonlight_initiative



Time: From Newtonian to Einstein
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Space and time are absolute. 

Space extends to infinity in all three 
directions, and time is the same at every 
point in space at any given instant. 

The rate of clocks is the same 
everywhere. 

Coordinate time

Credit: Wikipedia



Time: Einstein’s theory of relativity
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Space and time are absolute. 

There’s only spacetime. Every point in spacetime is an event. 

Space extends to infinity in all three directions, and time is the same at 
every point in space at any given instant. 

Length and time intervals are relative. Clocks tell the proper time. 

The rate of clocks is the same everywhere. 

The motion of the clock and gravity at the location of the clocks determine 
the rate of clocks. 

Credit: WikipediaNewton’s notion of space and time matches Einstein’s only if the universe 
is empty and static.



Spacetime and Relativity
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Our very beautiful universe is neither empty nor static.

Credit: ESA
“Spacetime tells matter how to move, and matter tells spacetime 
 how to curve.”                                                         —John Wheeler?

In practice, it means that the rate of clocks and length intervals 
determined  by “light clocks” are determined by gravity and 
relative motion.   



GPS  time (UTC without 
 leap seconds)

Scope and Outline
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GPS and coordinate time



Scope and Outline
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GPS satellite and ISS comparison

GPS III, Credit:  USAF ISS, Credit:  NASA

Height above the earth =26599.8 km 
   

Speed = 13946.3 km/hr 

GPS clocks will  tick faster (compared to clocks on the geoid)  
by   

Height above the earth = 411.863  km 

Speed = 27582.68  km/hr 

ISS clocks will tick slower (compared to clocks on the 
geoid) by  

Rate = + 45.78 μs/day

Rate = − 7.21 μs/day

Rate = + 3.78 μs/day

Rate = − 28.21 μs/day

∼ 24.4 μs/day∼ 38.5 μs/day



Coordinate time for the Earth: GPS as an example
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Credit: GPS

Clocks on the geoid beat at the same rate.  If coordinate time is based on clocks at infinity, the 
proper time of clocks on the geoid is:

Δf
f

=
3GMe

2ac2
+

Φ0

c2
.

−LG =
Φ0

c2
= − 6.969290134(0) × 10−10 ∼ − 60.2 μs/day

a → semimajor axis
GMe → earth's gravitational parameter

Substitute the Moon’s semimajor axis above to obtain a rate offset for the Moon: 58.721 μs/day

But there is a problem! 
This does not include the effect of the Moon's gravitational potential. Moon's potential should be treated as a tidal potential.

static plus centripetal 

If we treat Moon like a GPS satellite, 



• What is a good choice for the coordinate system that can be used to relate the proper times on the Earth and the 
Moon?  

• What is an appropriate choice for the locations of ideal clocks on the surfaces of the Earth and Moon that makes 
it easier to compare their proper times?  

• What is the proper time difference between clocks on the Moon and the Earth?  

• What are the proper time differences between clocks located at the Earth-Moon Lagrange points and the Earth? 

Time on the moon
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Abstract

As humanity aspires to explore the solar system and investigate distant worlds such as the Moon, Mars, and
beyond, there is a growing need to estimate and model the rate of clocks on these celestial bodies and compare
them with the rate of standard clocks on Earth. According to Einstein’s theory of relativity, the rate of a standard
clock is influenced by the gravitational potential at its location and its relative motion. A convenient choice of local
reference frames allows for the comparison of local time variations of clocks due to gravitational and kinematic
effects. We estimate the rate of clocks on the Moon using a locally freely falling reference frame coincident with
the center of mass of the Earth–Moon system. A clock near the Moon’s selenoid ticks faster than one near the
Earth’s geoid, accumulating an extra 56.02 μs day−1 over the duration of a lunar orbit. This formalism is then used
to compute the clock rates at Earth–Moon Lagrange points. Accurate estimation of the rate differences of
coordinate times across celestial bodies and their intercomparisons using clocks on board orbiters at Lagrange
points as time transfer links is crucial for establishing reliable communications infrastructure. This understanding
also underpins precise navigation in cislunar space and on celestial bodies’ surfaces, thus playing a pivotal role in
ensuring the interoperability of various position, navigation, and timing systems spanning from Earth to the Moon
and to the farthest regions of the inner solar system.

Unified Astronomy Thesaurus concepts: Celestial mechanics (211); Gravitation (661); Earth (planet) (439); The
Moon (1692)

1. Introduction

More than 50 yr after the first lunar landing, a multinational
consortium, which includes NASA, is working toward a return
to the Moon under the Artemis Accords (Artemis Plan 2020;
ESA 2022; NASA 2023). Our ability to explore distant worlds
will require the design and development of a communication and
navigation infrastructure within and beyond cislunar space. With
the expectation of a significant increase in assets on the lunar
surface and in cislunar space in the near future, developing a
robust architecture for accurate position, navigation, and timing
applications has become a matter of paramount interest.

Communication and navigation systems rely on a network of
clocks that are synchronized to each other within a few tens of
nanoseconds. As the number of assets on the lunar surface
grows, synchronizing local clocks with higher precision using
remote clocks on Earth becomes challenging and inefficient.
An optimal solution would be to draw from the heritage of
global navigation satellite systems by envisioning a system or
constellation time common to all assets and then relating this
time to clocks on Earth.

The relativistic framework using a generalized Fermi frame
presented here enables us to compare clock rates on the Moon
and cislunar Lagrange points with respect to clocks on Earth by
using a metric appropriate for a locally freely falling frame such
as the center of mass of the Earth–Moon system in the Sun’s
gravitational field (Fermi & Lincei 1922; Ashby & Bertotti
1986). The International Astronomical Union (IAU) resolutions
provide a fully relativistic framework for transformations of
coordinates (including time) and gravitational potentials and
parameterizing potential coefficients using post-Newtonian

potentials for constructing local reference systems for all celestial
bodies in the solar system (IAU 2000a, 2000b; Soffel et al. 2003;
Kaplan 2006). The relativistic celestial mechanics of the Earth–
Moon system can also be described by adopting Jacobi
coordinates within the framework of IAU resolutions (Kopeikin
& Xie 2010). More recently, the IAU Resolutions Committee
has approved proposals to establish a Standard Lunar Celestial
System and Lunar Coordinate Time (IAU 2024). Here, we
explicitly describe a framework to apply Einstein’s theory of
relativity for estimating and comparing clock rates to within an
accuracy of a few nanoseconds a day on celestial bodies,
constituting a restricted three-body problem.
The time measured by a clock at any given location is the

proper time. Relativity of simultaneity implies that no two
observers will agree on a given sequence of events if they are in
different reference frames (Einstein 1996). In other words,
clocks in different reference frames tick at different rates. The
gravitational and motional effects affect the ticking rate of
clocks when compared with “ideal” clocks that are at rest and
sufficiently far away from any gravitating mass. For example,
clocks farther away from Earth tick faster, and clocks in
uniform motion will tick slower with respect to “ideal” clocks,
and vice versa. Therefore, choosing an appropriate reference
frame becomes essential for obtaining self-consistent results
when comparing clocks on two celestial bodies. The gravita-
tional effects on clocks and clock comparisons add another
layer of complexity to synchronization challenges in deep-
space communications (Burleigh et al. 2003; Burt et al. 2021).
In this paper, we mainly seek answers to the following

questions: what is a good choice for the coordinate system that
can be used to relate the proper times on the Earth and the
Moon? What is an appropriate choice for the locations of ideal
clocks on the surfaces of the Earth and Moon that makes it
easier to compare their proper times? What is the proper time
difference between clocks on the Moon and the Earth? What
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Coordinate time: From Earth to Moon
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−ds2 = − (1 + 2(Φe − Φ0)
c2

+
2
c2 (Φm + Φs)

tidal)(dx0)2 +(1 −
2Φe

c2
−

2
c2 (Φm + Φs)

tidal)(dx2 + dy2 + dz2)

Analogous to the earth, clocks on the selenoid beat at the same rate.  For the moon, we have: 

Lm = −
Φ0m

c2
= −

Φm
θ=π/2

c2
−

ω2
ma2

m

2c2
= 3.13881(15) × 10−11

Apart from tidal effects, standard clocks at rest on an effective equipotential of the rotating Moon will beat at 
equal rates and can be used to define the rate of coordinate time on the Moon.

Coordinate intervals and proper intervals are connected using the metric, which is appropriate for a freely 
falling reference frame (no velocity terms!). 

The measure of spacetime is called a metric that is a solution to Einstein’s field equations.
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Center of mass for the Earth-Moon system 

The Earth and the Moon orbit around their mutual center of mass in different Keplerian orbits. The center of mass of the 
Earth-Moon system orbits around the Sun in an approximately Keplerian orbit. A fictitious locally freely-falling inertial 
frame is introduced at the Earth-Moon center of mass.

−ds2 = − (1 + 2Φe

c2
+

2Φm

c2 )(dx0)2 +(1 −
2Φe

c2
−

2Φm

c2 )(dx2 + dy2 + dz2)

−c2dτ2e = − (1 +
2Φe

c2 REeq

+
2Φm

c2 REeq)(dx0)2 + (Ve + ve)2
c2

(dx0)2

Φm

c2 REeq

= −
GMm

c2D

dτm − dτe
dτe

=
(GMm − GMe)

c2D
+

Φ0m − Φ0

c2
−

1
2c2

(V2
m − V2

e )

 The inertial frame is centered on the Earth-Moon center of mass with a well-defined coordinate time. But 
we don’t have to know what it is. Proper time is the time elapsed on the clocks at the geoid (equator). 

Earth’s velocity

clock velocity (not fixed)

D
definition of selenoid

definition of geoid
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Center of mass for the earth-moon: Keplerian orbits 

E − e sin E = (t − tP) GMa−3/2 = n(t − tP)
cos f (1 − e cosE) = cosE − e
sin f (1 − e cosE) = sin E 1 − e2

r = a(1 − e cosE)

E → eccentric anomaly
f → true anomaly
a → semimajor axis
e → eccentricity
tP → time of perigee passage

dτm − dτe
dτe

=
(GMm − GMe)

c2D
+

Φ0m − Φ0

c2
− (1 − 2μ)(GMT

2ac2)( 1 + 2e cos( f ) + e2

1 − e2 )

GMm

GMe + GMm
=

Mm

MT
∼ 0.01215

The center of mass system coordinate time has dropped out.  The proper time of clocks on Earth can be directly referenced to 
the proper time on the Moon.  The rate offset between the Earth and the Moon can be estimated as a function of true anomaly. 
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Clock rate offsets for the Moon and earth-Moon Lagrange points 

D

dτm − dτe
dτe

= 6.48378(15) × 10−10 − 1.25502518(89) × 10−12 cos( f )

= 56.0199(12) − 0.10843417(89)cos( f ) μs/day

A clock near the Moon's equator ticks faster than one near the Earth's equator, 
accumulating an extra 56.02 microseconds per day over the duration of a lunar orbit.

12

quantity location rate (µs/day)

(d⌧m/d⌧e)� 1 lunar surface 56.0199(12)� 0.10843417(89) cos(f)

(d⌧L1/d⌧e)� 1 L1 58.612420(12)� 0.10736106(12) cos(f)

(d⌧L2/d⌧e)� 1 L2 58.619639(12)� 0.12445590(12) cos(f)

(d⌧L4/d⌧e)� 1 L4/L5 58.707278(12)� 0.11045150(89) cos(f)

Table 3. Clock rates computed for various points of interest.

Analysis of the comparison clock on Earth’s surface is the same as for clocks at L1 or L2. The fractional rate di↵erence348

is349

d⌧L4 � d⌧e
d⌧e

= �GMT

c2D
� �0

c2
+

GMm

c2D
� GMT

2ac2(1� e2)

�
1� µ2

�
(1 + 2e cos(f) + e2) . (63)350

Evaluating this result numerically gives351

d⌧L4 � d⌧e
d⌧e

= 6.7948239(12)⇥ 10�10 � 1.27837388(89)⇥ 10�12 cos(f) , (64)352

353

d⌧L4 � d⌧e
d⌧e

= 58.707278(12)� 0.11045150(89) cos(f) µs/day . (65)354

5. CONCLUSIONS355

We presented a model based on Keplerian orbits for establishing coordinate time on the Moon and rates of clocks356

at Lagrange points in cislunar space. We have used values for Keplerian orbit parameters that can be looked up; the357

only parameters that fit were the times of periapsis passage. The main numerical results obtained using our approach358

are given in Table 3. We assumed a fixed eccentricity and fixed value for the semi-major axis for the Moon’s orbit359

around the Earth, as the present-day values for these parameters are very slowly varying (Daher et al. 2021).360361

The planetary ephemeris DE440 was used to calculate the potentials and velocities of Eq. (28); the di↵erence between362

the DE440 calculation and the Keplerian model calculations is only of the order of a few ns per day. Such di↵erences363

are due to tidal potentials arising from solar system bodies. Tidal e↵ects can be readily modeled using available orbit364

data and added as corrections to the Keplerian model for synchronizing remote clocks on the Moon to within a few365

hundreds of ps or better. Changes in time coordinate entail changes in length scale, which should be of higher order366

than the c�2 e↵ects we have considered here (see, for example, the length scale change in Eq. (A4)).367

This approach is also useful in calculating time comparisons between Earth and clocks in the neighborhood of other368

solar system bodies such as Mars. The available spherical harmonic gravity potential for Mars allows an estimate of369

the quantity LM for Mars that includes the average equatorial potential and rotational e↵ects, analogous to LG for370

Earth. In the case of Mars, the only available coordinate systems for the description of the problem are barycentric371

coordinates. The Earth-Mars rate di↵erence is dominated by the di↵erence in the Sun’s gravitational potential at the372

two locations. Keplerian models, as well as computations using DE440, can be usefully compared; this will be the373

subject of a future paper. Spatial transformations accompanying time transformations also remain to be examined as374

part of future work.375

APPENDIX376

A. FERMI COORDINATES WITH THE ORIGIN AT THE CENTER OF THE MOON377

The Moon’s center of mass is in free fall, and therefore its path is a geodesic. It is useful to construct Fermi378

coordinates with origin at this point, since then the only forces on an object in the neighborhood of the Moon due to379

external bodies are tidal forces. In this coordinate system, the Christo↵el symbols due to external bodies are all zero380

at the origin, while contributions to Christo↵el symbols from the Moon itself must be “e↵aced”, or discarded since381

they are infinite and such terms cannot cause acceleration of the Moon itself. The following calculation is taken only to382

order c�2. The geodesic in question is complicated because the Earth-Moon system orbits the Sun in an approximately383

Keplerian orbit, while the Moon and Earth revolve around each other in a di↵erent, approximately Keplerian orbit;384



Clock comparison in GR
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Thought experiment:  A tale of two identical clocks at different locations (mind the cable!)

Proper frequency (and time)  depend  on the gravitational 
potential at the location of the clock and the motion of the clock in space. 

Since there are no long cables connecting every point in spacetime, we 
have to establish a coordinate time locally that is operationally 
convenient. 

Coordinate frequency is conserved.  That is because the separation 
between successive waveforms or pulses constructed with such signals 
stays fixed (in spacetime) if you don’t move the cable. 

Send clock B signal through a cable that is not allowed to 
move during this experiment.

A

B

A very long cable

What is a clock? 
A device that locks to a frequency source and tracks it based on a 
definition. In the simplest form: Count cycles. When a fixed 
number is reached, increment the counter by a unit and repeat.



Clock comparison in GR
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Thought experiment:  A tale of two identical clocks at different locations (mind the cable!)

Pulses generated by clocks A and B using their proper frequencies can be 
compared at the location of clock A.

dt

dτ

Sequence of events 

Sequence of events 
A

B

f′ 

f

(clock ticks faster)

(clock ticks slower)

A

B

There is a distinction between transporting the clock 
versus transporting the clock signal—relativistically 
speaking!



Clock comparison in GR
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Thought experiment:  A tale of two identical clocks at different locations (mind the cable!)

A

B

f

f′ 

f′ → measured frequency
f → coordinate frequency
dτ → proper time interval

dτ
dt

− 1 =
f′ − f
f

This is the rate offset that is of interest to us for the 
calculations.

B

A
C

To match the measured frequency of clock C with clock 
B, apply positive correction to C

To match the measured frequency of clock C with clock 
A, apply negative correction to C

dt → realizes coordinate time interval
if B is moved to infinity (sufficiently far away  
away from  any gravitational field)
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Realizing Lunar Coordinated Time (LTC)

Filter / Algorithm

Steered clock

LTC, UTC-LTC

LTC

UTC

Various aspects of an elementary realization of  LTC are still under discussion.

Including the beginning of  LTC, including leap seconds, etc.
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Concluding remarks

−
GMe

Dc2
−

ϕ0

c2
, −

GMm

Dc2
−

ϕ0m

c2

−
V2
e

2c2
+

V2
m

2c2

Terms corresponding to the potentials of the Earth and Moon  
                                   and definitions of the geoid and selenoid: 

Terms corresponding to the speeds of the Earth and Moon  
                          w.r.t. the Earth-Moon center of mass frame: 

If the appropriate terms are not accounted correctly, results in 
                                                incorret estimates of  rate offsets:  

∼ 58.7 μs, ∼ 57.0 μs, ∼ 56.5 μs

Tidal corrections are of the order of :  

Corrections due to Lorentz contraction:  

~ less than 10 ns.   

~ less than 10 ps.   



Concluding remarks
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A freely falling coordinate system may be used to accurately estimate the Moon's rate offsets from the Earth’s geoid.  

Using the above, establishing a coordinate time for the Moon is very similar to establishing a coordinate time (also 
known as GPS time) for the Earth. 

This framework can be extended to compute rate offsets of other celestial bodies in the solar system and Lagrange 
points (cislunar space). 

Efforts to establish a reference frame and a reference time are continuing. 
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Lagrange points and cislunar space (extra)
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L2L3

L4

L5

L1
M1 M2 L3

L1 L2

L4

L5

Restricted three-body problem  solution by Giuseppe Lodovico Lagrangia in 1772  m ≪ Me and m ≪ Mm

⃗F = − GMe
⃗r − ⃗re

| ⃗r − ⃗re |3
− GMm

⃗r − ⃗rm
| ⃗r − ⃗rm |3

⃗Fm = ⃗F − m ⃗ω × ( ⃗ω × ⃗r ) − 2m ⃗ω ×
d ⃗r
dt

centrifugal coriolis

M2 /M1 = 0.5 (just an example) Mm /Me = 0.0123 (actual)



Lagrange points and cislunar space (extra)
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L3
L1 L2

L4

L5

Mm /Me = 0.0123 (actual)

dτL1 − dτe
dτe

= −
GMe

c2D(1 − x1)
−

GMm

c2Dx1
−

Φ0

c2
−

GMT(1 − μ − x1)2

2c2a(1 − e2)
(1 + 2e cos( f ) + e2)

+
GMm

c2D
+ μ2 GMT

2c2a(1 − e2)
(1 + 2e cos( f ) + e2)

Dx1 → Distance from Moon's center to L1

Stable Lagrange points                    —in this case—are also Trojan points.  The coriolis acceleration provides stability for these 
orbits.  At all other Lagrange points, spacecraft will drift away in  ~10 (earth) days.

L4 and L5

dτL4 − dτe
dτe

= −
GMT

c2D
−

Φ0

c2
+

GMm

c2D
−

GMT

2ac2(1 − e2) (1 − μ2)(1 + 2e cos( f ) + e2)

For  the stable Trojan points, the result is:


