

#### PNTAB

Our Purpose:
To Ensure PNT Is Available
For All Users.

Intro to theme 2: Improving International GNSS Capabilities -Governance, Costs & Services

December 2024

#### Current PNTAB Assessment:

"No <u>current</u> or <u>foreseeable</u> alternative to GNSS (Primarily GPS) can deliver equivalent PNT accuracy (to millimeters, <u>3D</u>) and world-wide 24/7 availability."

#### The PNTAB Strategy:

### <u> PTA</u>

"We must Protect, Toughen, and Augment GPS to ensure that it continues to provide Economic and Societal Benefits"

Assured Availability of PNT - "PTA"

#### Three Strategy Areas:

#### PTA - Protect, Toughen, Augment

- Protect the Clear & Truthful Signal-3 steps
  - 1. Advocacy vigorously oppose any FCC repurposing that would jeopardize current and future GPS uses
  - 2. <u>Pre-actions</u> even before interference occurs Legal/Law Enforcement/FCC:
    - Protect Spectrum/Enact strong Penalties/suppress
       Jammer sales
  - 3. Re-actions when interference/spoofing occurs:
    - Quick Knowledge of Jamming Area/Pinpoint Location/Shutdown Source/Apprehend Perpetrator/Prosecute as Appropriate

Assured Availability of PNT - "PTA"

#### Three Action Areas:

#### PTA - Protect, Toughen, Augment

- Toughen Users' Receivers to use GNSS
  - Employ multiple, well-known techniques to ensure <u>spoofing</u> can never create HMI
  - Increase Jam resistance use well established techniques multi-element antennas, deep inertial integration
  - Diversify Use All <u>integrity-certified GNSS</u>
     <u>signals</u> to determine P&T (with vector feature)

Assured Availability of PNT - "PTA"

#### Three Action Areas:

PTA - Protect, Toughen, Augment

- Augment or substitute PNT sources
  - Densify and Diversify satellites -

Signals/constellations

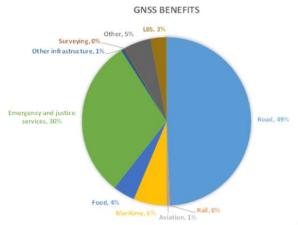
- Worldwide Integrity Monitoring
- Use Complementary PNT Sources -

e.g. DME, eLoran, LEOs

# National Power Elements Typically Include:

- · Population,
- Geography,
- Natural Resources,

- · Political Stability,
- · Leadership,
- Diplomacy,
- Cultural Influence.


# **GPS**

- Infrastructure,
- Military Capability,
- Technology,
- Economic Strength,
  - O Direct Benefits
  - Impacts when not available

#### Economic Benefits study UK only

 Quantified economic benefits to the UK of GNSS have been monetised at £6.7bn per annum, comprised of £1.2bn in Gross Value-Added (GVA) benefits and £5.5bn in utility benefits (efficiency, safety, etc.)

- Conservative estimates
- Cannot monetise all benefits
- Consider this a LOWER BOUND



#### From Study by RTI International

#### The Private-Sector Value of the Global Positioning System (GPS)

- Historical Benefits: \$1.4 trillion in economic benefits since 1984 for 10 sectors
  - Productivity, efficiency gains
  - Enjoyment of location features of personal devices
  - Lower environmental emissions, improved public health and safety
- Most benefits have accrued since 2010, from innovation initiated in the 1950s and 1960s
- GPS Outage: >\$1 billion per day in losses in the event of a GPS interruption
- Study offers insights into the relationships between public investments, private-sector innovation, and time

#### National Power

- In the last 20 years, GPS has become a major and essential element of National Power
- Other major Space-faring nations appear to completely grasp and embrace this.
  - Beidou is a concrete example
- Not clear this is understood by USG

### GPS Challenges

- GPS has not launched for about 2 years. The next launch will bring the number of L5 satellites to 18, which is a necessary (but <u>not</u> sufficient) condition for full operation of the L5 signal.
- The next GPS control system (OCX) has experienced extreme development challenges leading to large slips and overruns. This has impacted activation of new capabilities.
- ITAR has continued to be a massive deterrent to civil use of multi-element GPS antennas. Such antennas can reduce the effective area of jamming/interference by factors of up to 100,000.

<u>Some good news</u>: The Deputy Secretaries of Defense and Transportation (co-chairs of EXCOM) have recently re-engaged with PNT and the Advisory Board. Their ongoing personal attention (including the transition replacements) is essential for GPS to regain a leadership position among GNSS providers.

## Where is the GPS Capability relative to other GNSS?

Major issue for this PNTAB (E.G. - Have we slipped to the <u>Bronze Standard</u>?)

#### Initial Conceptual Comparison of Outcomes - either <u>current</u> or <u>projected</u>

- Initial assessment to be refined.

Russian GLONASS intentional omitted

| Color Key to this assessment       |  |  |
|------------------------------------|--|--|
| Apparently Most Capable            |  |  |
| Capable- Meets modern Expectations |  |  |
| Behind expectations                |  |  |
| Inadequate                         |  |  |

| Global Metric                                                  | GPS                                                                                                                                                                                      | Galileo                                                                                                                                        | Bediou                                                                                                                        |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Global<br>Availability of<br>Accuracy                          | •12 Hour update – being modified by need (2hr?) •No Retro-reflectors •L5 not Opnl. (FOC Jan '29) •No High-accuracy service                                                               | •2 Hour Update •Retro-reflect •E5 Bein eployed •High ccuracy Service ing deployed                                                              | <ul><li>Wideband Intersatellite<br/>updates</li><li>Retroreflectors</li><li>B2 operational</li></ul>                          |
| Global<br>Robustness/resistance<br>to Jamming and<br>spoofing  | <ul> <li>ITAR restricts use of Digital nulling antennas in US</li> <li>No plan for authorition Message</li> <li>Use of all GNN if Intentity is assured</li> <li>not Ops tiona</li> </ul> | • Apparent & no User Antenna<br>triction Europe<br>• Or Sional Itegrity<br>Itessa <sub>b</sub><br>• PRS service available for<br>public safety | <ul> <li>Antenna restrictions<br/>unknown</li> <li>3 Opnl. Civil signals at 3<br/>frequencies</li> </ul>                      |
| Global Integrity                                               | • No Sectem Progretty Message                                                                                                                                                            | •EGNOS provides rapid integrity updates in Europe •Imbedded authentication message                                                             | •Rapid short messaging Capability                                                                                             |
| # of Operational Civil<br>Signals or<br># of Civil Frequencies | •31 Opnl. Satellites •1 Signal at 1 Frequency •2 new signals at 2 new freq. have begun but not Opnl.                                                                                     | •24 Opnl Satellites •3 Signals at 3 Frequencies Opnl.                                                                                          | <ul><li> 35 Opnl Satellites (46?)</li><li> 3 Signals at 3 Frequencies</li><li> Opnl.</li></ul>                                |
| Other Measures and<br>Features<br>12/4/2024                    | Search and Rescue Support<br>has begun  PNTAB Statu                                                                                                                                      | <ul><li>Search and Rescue Support</li><li>Operational</li><li>SAR return Link service</li><li>BP Dec 2024</li></ul>                            | <ul> <li>Search and Rescue<br/>Support Operational</li> <li>SAR return link service</li> <li>Regional Geo. overlay</li> </ul> |

## From PTA subcommittee at this Meeting

|                                             |                         | Comparison of                                                       | PNT Servi               | es Avai | lable to Civil Users                       |                                                                 |                                |
|---------------------------------------------|-------------------------|---------------------------------------------------------------------|-------------------------|---------|--------------------------------------------|-----------------------------------------------------------------|--------------------------------|
|                                             |                         | United States                                                       |                         |         |                                            | China                                                           |                                |
| System or                                   | Timing                  |                                                                     | Positioning             |         |                                            |                                                                 |                                |
| Capability                                  | Government-<br>Provided | Commercial-<br>Provided                                             | Governm<br>Provided     | !       | Commercial-<br>Provided                    | Timing                                                          | Positioning                    |
| Global<br>Navigation<br>Satellite<br>System | GPS [1],<br>Galileo     | [1]                                                                 | GPS [1], <mark>(</mark> | alileo  | [1]                                        | BeiDou,<br>Galileo(?)                                           | BeiDou,<br>Galileo (?)         |
| LEO Satellites                              |                         | Iridium STL [2]                                                     |                         |         | TrustPoint, Xona,<br>NAL, Parsons          | [3]                                                             | [3]                            |
| Terrestrial<br>Broadcast                    | WWV, WWVB               | ATSC 3.0 BPS [4],<br>[8]                                            |                         |         | ATSC 3.0 BPS,<br>mobile phones [4],<br>[8] | eLoran<br>Infrastructure<br>Installed [5]                       | Mobile<br>phones               |
| Fiber-Based<br>Timing                       |                         | Major Telecoms,<br>[8]                                              | Not Appli               | cable   | Not Applicable                             | Comprehensive<br>Government<br>Program Being<br>Implemented [6] | Not<br>Applicable              |
| Authentication/<br>Integration of<br>Timing | ,                       | Unknown What<br>Iridium STL and<br>Major Telecoms<br>Offer and Plan | Not Appli               | cable   | Not Applicable                             | Comprehensive                                                   | Not<br>Appl <del>ic</del> able |

Notes and references in Notes page and final slide

#### Comparing GNSS Capabilities and Plans Draft for discussion at April PNTAB Meeting

**Estimated Current Status** 

|                            | Not planned/funded      |
|----------------------------|-------------------------|
| Dates are estimated year   | Being "studied"         |
| of earliest FOC, or actual | currently funded        |
| FOC                        | currently being fielded |
|                            | fully operational       |
|                            | Unknown                 |

Estimated Dates are driven by earliest fully funded project start and Satellite launch rates, currently about an average of 2 per year

|   | Capability or Policy                                                                                            | Description                                                                                                                    | GPS                                        | Galileo | BDS |
|---|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|-----|
| 1 | Activate L5<br>(and L2C and L1C)                                                                                | L5 more capable civil signal - both accuracy and anti-Jam<br>Is not currently planned for US Militar eivers                    | 20 for L5 IOC<br>5 for Certification?      |         |     |
| 2 | Laser Retroreflectors                                                                                           | Enhanced ranging accuracy- enabling buter long predictions of satellite productions disastellite clocks.                       | 203 Constrained by two a year launch rate. |         |     |
| 3 | Remove all ITAR restrictions on multi- element antennas and on deeply integrated GPS- Inertial receiver designs | State the art in Resistant<br>Standard Indian Standard In Turkey                                                               | 2024                                       | UNK     | UNK |
| 4 | Free Broadcast PPP data<br>('High Accuracy Service")<br>also on the internet                                    | Provides ridwig ranging error corrections either through thata message or over the internet                                    | 2030?                                      |         |     |
| 5 | Rapid (2 hour) Updates<br>and Reduce Vulnerability<br>of Upload stations                                        | May be coupled with interstallite ranging and High Speed<br>Comm.Reduces Ranging errors by 50% comparred to 12<br>hour updates | 2035?                                      |         |     |
| 6 | Search and Rescue<br>(SAR)Support                                                                               | Distress Receiver on GNSS, monitoring location and notifying rescue authorities                                                | Started Fielding                           |         |     |
| 7 | Embedded authentification                                                                                       | Well studied technique to defeat spoofing attack                                                                               | Studies by FAA - 2040?                     |         | UNK |

# Comparing Advanced GNSS Capabilities and Plans <u>Draft for discussion at April PNTAB</u> <u>Meeting</u> Estimated Current Status

Dates are estimated year of earliest FOC, or actual FOC currently being fielded fully operational Unknown

| Capability                                                                              | Description                                                                                                                    | GPS and Earliest Probable IOC (18 Satellites) on current Satellite Planning Trajectory | Galileo                                                                                                    | BDS |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----|
| Regional<br>Geosynchronous<br>Overlay                                                   | Enhance Geometry. Method to simply use Concentrating Antenna for signal acquisition                                            | 203                                                                                    | UNK                                                                                                        |     |
| Two-way High Data<br>Rate intersatellite<br>laser (or RF?) ranging<br>and communicatios | Enables better ephemeris prediction. Enables "Autonomous" epheme predictions. Enables remote refreshing of ephemeris predictio | 204                                                                                    | UNK                                                                                                        |     |
| Two way short messaging including SAR confirmation messaging                            | Emergency Wasting and her brie communication                                                                                   | 2035                                                                                   | https://www.eoportal.org/satellite-<br>missions/gailleo-g2#novel-capabilities-<br>from-gailleos-next-phase |     |
| Emergency<br>warning/integrity<br>service                                               | orldwide Way 6 on G 6 - could be part of PPP see lat vitem.                                                                    | 2030?                                                                                  | UNK                                                                                                        | UNK |
| GPS-lite + 3 or 4 per<br>booster                                                        | New hardway prototype to fully evaluate Protection and educe on-orbit cost                                                     | 2028 for 24 on orbit?                                                                  | UNK                                                                                                        | UNK |
| Locating and shutting down Jammers                                                      | National Authority and System                                                                                                  |                                                                                        |                                                                                                            |     |

### Major un or partially fulfilled PNTAB Recommendations

- 1. <u>ITAR</u>. To achieve near-immunity to jamming, remove all ITAR restrictions on civil GPS toughening measures particularly multiple element digital antennas.
- 2. <u>L5.</u> Activate L5 and accelerate standards development to encourage exploitation of benefits. Promptly launch GPS IIIs with fully redundant L5 and Laser retroreflectors. Ensure L5 is a fully redundant civil signal.
- 3. <u>GNSS Signal Protection</u>. <u>Designate</u>, <u>fund</u>, and give <u>full authority</u> to central US government individual to detect, characterize <u>and remove</u> GNSS signal interference.
- 4. Exploit all ("friendly?") GNSS Signals. Expand authorization and encouragement of integrity-assured multi-frequency and multi-GNSS constellation receivers. Encourage, expand and implement concept of multi-layered integrity assurance. (further explanation follows)
- 5. <u>HARS</u>. Develop and implement a GPS High Accuracy and Robustness Service (HARS) delivered via the Internet. See white paper.
- 6. <u>Watermark.</u> To enhance anti-spoofing capability, develop and implement an anti-spoofing watermark component for GPS open signals. Like Galileo OSNMA (Open Service Navigation Message Authentication) or Chips Message Robust Authentication (CHIMERA)

## Use of GNSS signals from all sources Resiliency and the "<u>Layered Integrity Guardians</u>" - (layered security)

- There are <u>At least seven major techniques</u> to assess the integrity of positioning signals and improve resiliency. Most of them ensure the integrity of both US and foreign GNSS transmissions. Note: A typical cell phone is now receiving about 60 signals from at least two frequency bands, with over 30 satellites in view.
  - 1. Direct Integrity Monitoring and Notification- WAAS, EGNOS, et.al.
  - 2. System, Frequency, and Signal Diversity.
  - 3. Differential operations.
  - 4. Watermarking to prevent Spoofing
  - 5. RAIM and ARAIM Autonomous self checking.
  - 6. Cell Phone Monitoring and Integrity Screening
  - 7. Internet Integrity Messaging

#### An Overarching Issue

<u>Background</u>: Most measures of GNSS capabilities and plans show Civil GPS falling behind other GNSS. US Policy states that GPS should be second to none.

**Recommendation**: Relook at organization of PNT governance, authorities, and resources with a purpose of:

- Developing and publishing a <u>funded</u> National PNT strategy (update to DOT version)
  - > Strategy architecture should build a future-oriented, national, resilient PNT strategy architecture, implementation, and action plan
- Ensure Coordination directly with all executive branch departments, independent agencies (including the FCC), and Congress.

#### Speaker's thought provoker (follow-on to Chair Comment):

- Is it time to <u>disaggregate</u> civil and military GPS satellite systems:
  - > GPS Civ-sat All civil signals only
  - > Separate Control System (without military grade security)
  - Separate funding (Say a \$10/year US cellphone tax)
  - > Drive to multi-launched, simplified satellites
- Should PNTAB do an initial study of <u>How</u> and <u>Advantages/Disadvantages?</u>

### Let's re-emphasize "Toughening" and get multi-element antennas into all Military Platforms

And remove them from the ITAR List so Commercial airplanes can exploit and the COTS prices drop.

